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The two processes should lead to anisotropic con- 
ductivity along and perpendicular to the c direction, 
an effect which has already received experimental 
confirmation (Baranov, 1989). The structural results 
indicate no possiblity of the Cs ÷ diffusion as 
reported elsewhere (Pham-Thi, Colomban, Novak & 
Blinc, 1987). Haynovskiy, Pavlyuhin & Hayretdinov 
(1985) reported that in the low-temperature phase 
the conductivity of C s H S O 4  is two orders of magni- 
tude higher than that of CsDSO4,  whilst in the 
superionic phase their conductivities are approxi- 
mately equal. From this arose tlte assumption that 
the diffusion of Cs ÷ contributes to the conductivity 
(Pham-Thi, Colomban, Novak & Blinc, 1987). How- 
ever as noted above the room-temperature structure 
of CsHSO4 differs from that of CsDSO4 and so the 
large difference in conductivity in the low- 
temperature phases of protonated and deuterated 
samples cannot be solely assigned to an isotopic 
effect as previously stated (Haynovskiy, Pavlyuhin & 
Hayretdinov, 1985). 
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N. M. Shchagina for preparing the sample and Z. 
Jirak for valuable discussions and suggestions during 
the data analysis. One of us (AVB) would like to 
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access to the ISIS facilities and for financial support. 
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Abstract 

At the ZrO2-rich end of the phase diagram, the 
Nb205 + ZrOz system forms a complex 
Nb2Zrx-2Ozx+l (x-- 7.1-10.3) solid-solution field 
which can be structurally characterized as a compo- 
site modulated structure. Fourier decomposition of 
the Galy & Roth [J. Solid State Chem. (1973), 7, 
277-285] structure refinement of one composition 

0108-7681/91/020166-09503.00 

within this field, i.e. Nb2Zr6Ol7, in such terms gives 
the underlying parent metal-atom subcell (Amma, aM 
= 5" 1, bM = 4"9, CM = 5"2 A) and parent O-atom sub- 
cell {Imam, ao = [x/(2x + 1)]aM, bo = bu, Co = cM} 
along with specific expressions for the atomic modu- 
lation functions describing the structural deviation of 
the two sublattices from their respective parent 
subcells. The extinction conditions characteristic of 
this Nb2Zrx 202x+ ~ (x = 7.1-10-3) solid-solution 
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field imply a superspace-group symmetry of 
M : A m m a :  - lsl .  This superspace group is defined by 
the above parent metal-atom subcell in conjunction 
with the modulation wavervector q = b%t + (1/x)a*. 
For x = 8, this effectively cuts the number of free 
structural parameters to be refined in half, i.e. certain 
parameters allowed by the conventional superstruc- 
ture refinement of Galy & Roth should be con- 
strained to be zero. A modulated-structure approach 
provides the only possible coherent means of describ- 
ing this material across the whole of its solid-solution 
field. Refinements using this approach are clearly 
needed. 

1. Introduction 

At the ZrO2-rich end of the phase diagram, the 
Nb205 + ZrO2 system forms a complex 
Nb2Zrx-202x+l solid-solution field which may be 
regarded as a stabilized anion-excess zirconia. 
Recent work has shown that the phase width of this 
field is 5.1 < ZrO2:Nb205 < 8.3, i.e. 7.1 < x < 10.3. It 
was previously thought to be an homologous series 
MnO2n+2 with n = 2x and M a metal (Roth, Waring, 
Brouwer & Parker, 1972) but it is now recognized 
that it is more correctly described as a so-called type 
II, or composite modulated structure (Janner & 
Janssen, 1980; Thompson, Withers, Sellar, Barlow & 
Hyde, 1990). Reciprocal space is dominated by a 
conspicious set of strong matrix reflections G = 
(h ,k , l )*  corresponding to a metrically orthorhombic 
average metal subcell (Amma,  a M "" 5" 1, b M  = 4.9, CM 
--~ 5"2 /~). A rather weaker set of incommensurate 
satellite reflections occur at G+_-mq=(h , k , l ,m)  *, 
where m is an integer, and with q = (1/x)a* + b* (de 
Wolff, 1974). 

Given the experimental observation of a conti- 
nuous smooth variation of q across the whole solid- 
solution field (i.e. the lack of any evidence for 1/x 
'locking in' to a rational fractional such as ~, ~, ~...), 
it is clear that a generally applicable crystallographic 
description of this phase must be based upon a 
modulated-structure, or superspace-group, approach 
rather than upon conventional crystallographic 
structure refinement at rational values of 1/x. In 
general q is incommensurable with G. For rational 
values of x, however, it appears that a superstructure 
approximation can be made and a conventional 
three-dimensional structure refinement carried out. 
Only one such structure refinement has ever been 
made within this solid-solution field and that was for 
Nb2Zr60~7, i.e. for x = 8 (Galy & Roth, 1973). The 
purpose of this paper is to Fourier decompose this 
crystal structure refinement into its two constituent 
modulated structures - one corresponding to the 
metal sublattice and the other to the oxygen sublat- 
tice. Both these metal and oxygen sublattices possess 

well-defined underlying parent subcells which it is 
reasonable to presume remain fairly constant across 
the whole solid-solution field. The interaction of 
these two, in general, mutually incommensurable 
parent subcells leads to modulation (again, in 
general, incommensurate) of both (de Wolff, 1988). 
Fourier decomposition of the Galy & Roth (1973) 
structure solution in terms of these parent subcells 
and their accompanying displacive modulations 
enables a picture to be built up of the whole solid- 
solution field provided we make the reasonable 
assumption that only the modulation wavevectors, 
and not the corresponding displacement eigen- 
vectors, vary substantially across the solid-solution 
field. In addition, such a Fourier decomposition 
enables an interesting comparison to be made of the 
relative virtues of refining such superstructures via a 
conventional, as opposed to a modulation-wave or 
superspace-group, approach. 

2. The underlying parent subcells 

Most ternary oxides ZrO2:MOx in which ZrO2 is the 
major component have a fluorite-related structure 
e.g. anion-deficient fluorites where M = Mg, Ca, Ln. 
Thus, when M = Nb or Ta, one might also expect 
that the parent structure should be fluorite-related, 
i.e. possess an F m m m  parent metal-atom subcell with 
aM = b M  = CM'-" 5.1 A and a P m m m  parent O-atom 
subcell with ao = bo = Co -- 2.5/k. The stoichiometry 
of the (Nb,Zr)xO2x+l solid-solution field, however, 
implies that the average O-atom subcell must be 
compressed relative to the average metal-atom sub- 
cell such that 2x + 1 oxygen subcells must fit into 
every x metal subcells. 

2.1. The parent  meta l -a tom subcell 

The conspicuous strong set of matrix reflections G 
(see Fig. 1) clearly define the average metal-atom 
subcell as metrically orthorhombic with aM ----- 5" 1, bM 
= 4"9 and eM = 5"2 •. Galy & Roth (1973), for x = 
8, report a space-group symmetry of Ima2 with a = 
40.91, b = 4.93, e = 5-27 A. Appropriate folding back 
of this structure solution gives an A m m a ,  aM = 5"11, 
bM = 4"93, CM = 5"27 /~ averaged metal-atom subcell 
(with the a glide located at z = 0.0484) and an Imam,  
ao = [x/(2x + 1 ) ] a  M = l~aM, bo = bM,  Co = C M  aver- 
aged O-atom subcell (with the --m plane located at z 
--~ + 0.0565). However the extinction conditions 
characteristic of the whole solid-solution series (given 
in §3.2 below), and in particular the condition that 
F(h,k ,O,m)* = 0 unless h = 2n (see Fig. l d), require 
the parent structures of both the metal and O-atom 
subcells to have a least -mm point-group symmetry 
with respect to the same origin. This is consistent 
with an underlying parent metal-atom subcell sym- 
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metry of Amma but not with Amm2. The choice of 
an underlying parent subcell symmetry is somewhat 
complicated by the fact that the two subcells are in 
fact mutually commensurable for x = 8, albeit at a 
high order of commensurability. Thus high-order 
harmonic q = 0 displacive modulations of each of the 
underlying parent subcells due to their interaction 
with the other subcell and resulting in a lowered 
average structure space-group symmetry are allowed 
[see §2 of P6rez-Mato, Madariaga, Zufiiga & Garcia 
Arribas (1987)]. In particular, such q = 0  modes 
allow an origin shift along the e axis for both the 
parent metal- and O-atom subcells which need not be 
equal (see §3.3 and 3.4 below). Thus the choice of 
origin along the e direction is somewhat ambiguous. 
Galy & Roth chose to fix the z coordinates of a 
specific metal atom at ½. We have chosen to subtract 
a global origin shift of 0.0484eM from the coordi- 
nates of all the Galy-Roth atom positions such that 
the average, as well as the parent, metal-atom subcell 
contains an a glide perpendicular to eM located at z 
= 0, as required by the observed extinction condi- 
tions and as shown in Fig. 2(a). Note that the 

space-group symmetry of the metal-atom subcell 
would be Fmmm and the fractional coordinates 
identical to those in the related fluorite structure if 
the parameter 8 were zero. In reality, however, the 
parameter 8 = 0.0394 = 0-22 A (according to Galy & 
Roth) and the resultant average (and also parent) 
metal-atom space-group symmetry Amma. Allowed 
metal-atom subcell reflections include (200)*, 
(020)*, (002)~,, (011)*, (111)~ .... 

2.2. The parent O-atom subcell 

With the above choice of origin, folding back of 
the Galy & Roth (1973) structure solution gives an 
Ima2, ao = [x/(2x + l)]aM = ll~aM, bo -- bM, Co = cM 
averaged O-atom subcell as shown in Fig. 2(b). Note 
that the space-group symmetry would be Cmmm 
(with a halved Co axis) if the parameters 81 --0.0233 
and 82 = 0.0081 were both zero, and Imam if just the 
small parameter 82 w a s  zero. The extinction condi- 
tions characteristic of the whole solid-solution series 
(given in §3.2 below; and see Fig. 1) require the 
parent structures of both the metal and oxygen 

(a) (b) 

(c) (o9 

Fig. 1. (a) [1001,.,, (b) [010]M, (c) 
[0TI]M and (d) [001]~ zone- 
axis convergent beam diffraction 
patterns typical of Nb2- 
Zrx-202~+, (x-- 7.1-10.3). The 
four-index scheme used for 
labelling reflections is described 
in the text. 
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subcells to have at least -mm point group symmetry, 
consistent with an underlying average oxygen subcell 
symmetry of either C m m m  or Imam but not with 
lma2. The choice of an underlying parent O-atom 
subcell symmetry is again complicated by the fact 
that a high-order harmonic q - 0 displacive modula- 
tion of the underlying parent oxygen subcell (due to 
its interaction with the metal subcell), resulting in a 
lowered average structure space-group symmetry, is 
allowed [see §2 of P6rez-Mato et al. (1987)]. In what 
follows, we will set 62 equal to zero and take the 
resultant Imam structure as the underlying parent 
O-atom subcell (see Fig. 2b). If the parameter 32 is 
genuinely non-zero, it has to be understood in terms 
of a high-order harmonic displacive modulation of 
this Imam average structure. It is also worth noting 
that the O-atom array shown in Fig. 2(b) is very 
similar to the O-atom array of the ce-PbO2 structure 

type when projected down its [010] zone axis. For the 
two oxygen arrays to be made identical, however, we 
would require alternate columns of O atoms (along 
ao) in Fig. 2(b) to move up and down the Co axis by 
exactly -~eo and a modulation wavevector of a~. (A 
similar modulation does in fact occur in this system 
as will be shown below. The modulation wavevector, 
however, is 1 . - ~ a o  rather than a&) The relationship 
of the parent fluorite O-atom array to this Cmmm,  
a o = [ X / ( 2 + l ) ] a M = s a M ,  b o =  bM, CO= CM aver- 
aged O-atom array is clear from Fig. 2(b), i.e. the 
parent fluorite O-atom array transforms into the 
Cmmm O-atom array via sheets of O atoms perpen- 
dicular to bo moving + ¼ao and - ] a o  alternatively. 
Bravais-lattice-allowed O-atom subcell reflections 
include (200)*, (020)& (002)& (011)& (110)6 ... or 
(a~00)*, (020)~t, (002)*, (011)*, (~10)* if written in 
terms of the metal-atom subcell reciprocal lattice. 

½-8 0*8 

0-6 1. 6 

~M 2" 
(a) 

(b) 

Fig. 2. (a) The Amma,  aM = 5" I 1, bM = 4"93, CM = 5"27 /~, parent 
metal-atom subcell obtained from the Galy-Roth  structure 
refinement of  Nb2Zr6Oi7. The parameter 6 is equal to 0-0394. 
The two metal-atom sites per primitive unit cell are labelled 1 
and 2 respectively. (b) The Ima2, ao = ham = 2.405, bo = bM = 
4-93, Co = CM = 5"27 /~, average O-atom subcell obtained from 
the Galy-Roth  refinement. The two O-atom sites per primitive 
unit cell are labelled 3 and 4 respectively. Their fractional 
coordinates are given by 14, 14 + 61, 14 + 6z and ¼, ~ -  ~1, ~ + ~2. 
According to Galy & Roth, 8t = 0-0233 and 6z = 0.0081. The 
parent Imam O-atom subceil corresponds to setting 6z equal to 
zero. 

3. Modulation of  the parent metal and oxygen 
subcells 

Having defined the parent metal and oxygen subcells, 
it is now necessary to allow both subcells to respond 
to the presence of the other. This response, or 
relaxation, takes the form of compositional and dis- 
placive modulation characterized by appropriate 
compositional and displacement eigenvectors and by 
modulation wavevectors which are harmonics of 
primary-modulation wavevectors q reflecting the 
difference between the reciprocal-lattice vectors of 
the parent metal and oxygen subcells. 

3.1. Primary-modulation wavevectors 

The primary-modulation wavevector characteristic 
of the metal sublattice is given by qM = (110)6-- 

l , (200)* = b*  + ~aM [ = b *  + (1/x)a* in the general 
case] whilst that characteristic of the oxygen sublat- 
tice is given by q o - - a * = ( l l l ) * - ( 0 1 1 ) 6 - - S a ~  
( = [x/(2x + 1)]a~ in the general case). For x = 8, qo 
= 8 q M -  8b~, i.e. qo can be described as a higher- 
order harmonic of qM. For general x, however, this is 
not the case. The primary-modulation wavevectors 
characteristic of the two sublattices have to be 
chosen so as to be consistent with the Bravais classes 
(de Wolff, Janssen & Janner, 1981) of the other. 
Thus the reflection condition characteristic of the 
Bravais class of the metal sublattice, i.e. F(h,k, l ,m)* 
= 0  unless k + l =  2n, must be equivalent to the 
reflection condition characteristic of the Bravais class 

• t / / , of the oxygen sublattice, i.e. F(h ,k ,l ,m )o = 0 unless 
h' + k' + l' = 2n, when the reciprocal-lattice vectors 
of one subcell are expressed in terms of the other. 
Thus (h,k, l ,m)* = ha~t + k b *  + lc*  + (m/x )a*  + 
mb* = ma~ + (k + m)b~ + /c~  + (h - 2m)a*. That 

. . . .  * h' k' l , =  F( h ,k ,l ,m )o = O unless + + 2n is thus 
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equivalent to requiring that k + l = 2n, the Bravais 
class requirement of the metal sublattice. 

3.2. Characteristic extinction conditions and super- 
space-group symmetry  

The superspace-group symmetry of the metal sub- 
lattice (and indeed of the whole composite 
modulated structure) implied by the Galy & Roth 
(1973) structure refinement is M : A m m 2 : - l s - 1  (de 
Wolff et al., 1981). The corresponding characteristic 
extinction conditions are as follows: F(h,k, l ,m)* = 0 
unless k + l = 2n (see Fig. l a) and F(h ,k , l , -  k ) *  = 0 
unless k = 2n (see Fig. l b). Similarly, the superspace- 
group symmetry of the oxygen sublattice implied by 
the Galy & Roth (1973) structure refinement is 
P: Ima2: -  11 - 1. The corresponding characteristic 
extinction conditions are as follows: F(h,k,l,m)~ = 0 
unless h + k + l = 2n and F(h,O,l,m)~ = 0 unless h, l 
= 2n. They give rise to the same extinction condi- 
tions as the metal sublattice when the oxygen subcell 
reciprocal-lattice vectors are expressed in terms of 
those of the metal-atom subcell. 

The number of free structural parameters which 
have to be refined using the above superspace-group 
symmetry or symmetries is formally the same as that 
refined by Galy & Roth, as indeed has to be the case. 
However, as pointed out recently by P6rez-Mato et 
al. (1987), the number of effective structural param- 
eters to be refined decreases when some of the 
higher-order harmonic modulations can be neglected 
for whatever reason. The observed condition, for all 
values of x, that F(h,k,O,m)* = 0 unless h = 2n (see 
Fig. l d) requires that the correct superspace-group 
symmetry describing both the metal sublattice and 
the total composite structure has to be increased to 
M : A m m a : -  lsl from M : A m m 2 : -  l s -  1 while the 
correct superspace-group symmetry describing the 
oxygen sublattice has to be increased to 
P : I m a m : - l l s  from P : I m a 2 : - l l - 1 .  Such an 
increase in superspace-group symmetry effectively 
cuts the number of free structural parameters in half. 
If the condition F(h,k,O,m)* = 0 unless h = 2n +1 
had held, then the correct composite superspace- 
group symmetry would have been M : A m m a : - l s s  
rather than M : A m m a : - l s l .  Note, however, that 
(h,k,0,8 + m)* -- (h + 1,k + 8,0,m)* for x exactly 
equal to 8. Thus the condition that F(h,k,O,m)* = 0 
unless h = 2n no longer formally exists for x exactly 
equal to 8. Thus, at least formally, no extinction 
condition now exists and, hence, reciprocal space is 
suddenly compatible with both the above super- 
space-group symmetries. The resultant composite 
superspace-group symmetry is M : A m m 2 : -  l s -  1. 
The reason one can still experimentally distinguish 
M : A m m a : - l s l  from M : A m m a : -  lss, even for x 
exactly equal to 8, is that the intensity of the various 
satellite reflections drops off rapidly with increasing 

harmonic order. Thus third- and fourth-order 
harmonics are barely visible in Fig. 1. Indeed no 
harmonics of higher order than second could ever be 
detected in X-ray powder patterns (Thompson et al., 
1990). 

3.3. Modulation o f  the parent metal subcell 

Given an unmodulated parent metal subcell of 
Amma,  the little co-group (see Bradley & Cracknell, 
1972) of the primary-modulation wavevector qM = 

1 b* + ~aM [= b* + (1/x)a* in the general case] and all 
its higher-order harmonics mq is given by 
{E, C2x,O'y,Oz}. The corresponding multiplication 
table is given by: 

E C2x O'y 0% 

R I +1 +1 +1 +1 

R 2 +1 +1 - 1  - 1  

R3 +1 - 1  +1 - 1  

R4 +1 - 1  - 1  +1 

The observed composite superspace-group symmetry 
of M : A m m a : - l s l  requires that the modulations 
associated with all odd-order harmonics transform 
with R4 symmetry whereas all even-order harmonics 
transform with R~ symmetry. The lower composite 
superspace-group symmetry of M : A m m 2 : -  l s -  1 
allows the modulations associated with all odd-order 
harmonics to transform with R2 as well as R4 sym- 
metry and the modulations associated with all even- 
order harmonics to transform with R3 as well as Ra 
symmetry. There are two metal atoms per primitive 
parent unit cell, labelled 1 and 2 in Fig. 2(a). 
(Because of the similarity in the atomic scattering 
factors of Zr and Nb for X-rays, the Galy & Roth 
structure refinement was unable to distinguish 
between Zr and Nb atoms and hence no further 
consideration will be given to compositional modula- 
tion in this paper.) Both R4 and R2 irreducible 
representations constrain the corresponding displa- 
cive modulations to entail only bM motion whereas 
R~ and R3 irreducible representations both constrain 
the corresponding displacive modulations not to 
entail bM motion. The atomic modulation functions 
(AMF's; see P6rez-Mato et al., 1987) describing the 
most general possible structural deviation of these 
metal atoms from their underlying parent subcell, 
for the observed superspace-group symmetry of 
M:Amma: - lsl ,  can then be written in the form: 

U~(T) = aM{ex(2qM;ROcos(4~'qM.T -- 90 °) 

+ ex(4qM;Rl)COS(87rqM.T -- 90 °) + ...} 

+ bM{ey(qM;R4)cos(2zrq~t.T - 90 °) 

+ ey(3qM;R4)cos(6zrqM.T - 90 °) + ...} 

+ eM{ez(2qM;Rl)COS(4~'qM.T + 0 °) 

+ ez(4qM;R~)cos(8~'qM.T + 0 °) + ...} 
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and 

U2(T) = aM{ex(2qM;R0cos(47rqM.[T + a/2] -- 90 °) 

+ ex(4qM;ROcos(87rqM.[T + a/2] -- 90 °) 

+ ...} + bM{ey(qM;Ra)COS(27rqM.[T + a/2] 

- 90 °) + ey(3qM;R4)cos(67rqM.[T + a/2] 

- 90 °) + ...} - CM{ ez(2qM;R~)cos(4zrqM.[T 

+ a/2] + 0 °) + ez(4qM;RI)COS(87rqM.[T 

+ a/2] + 0 °) + ...} 

where T is an allowed Bravais lattice vector of the 
average metal subcell and where the phases have 
been fixed via application of the superspace-group 
symmetry operation {trxl0,½} [equivalent to the m in 
the conventional Ima2 space group; the superspace 
symmetry-operation notation is that of P6rez-Mato, 
Madariaga & Tello (1986) and P6rez-Mato et al. 
(1987)]. Note that for x = 8  only harmonics 
out to fourth order give independent modulation 
wavevectors. 

The remaining structural degrees of freedom 
required to enable a complete fit to the Galy-Roth 
structure refinement (i.e. those structural degrees of 
freedom compatible with the lower composite 
superspace-group symmetry of M : A m m 2 : -  I s -  1 but 
not with the observed superspace-group symmetry of 
M : A m m a : -  lsl)  can be written in the form: 

A U I ( T )  = aM{ e~(2qM; R3)COS(4 zrqM.T -- 90 °) 

+ ex(4qM;R3)cos(87rqM.T -- 90 o) + ...} 

+ bM{ey(qM;R2)cos(2rrqM.T -- 90 °) 

+ ey(3qM;R2)cos(6rrqM.T -- 90 °) + ...} 

+ eM{ez(2qM;R3)cos(4zrqM.T + 0 °) 

+ ez(4qM;R3)cos(8rrqM.T + 0 °) + ...} 

and 

AU2(T) = - 

+ 

+ 

aM{ ex(2qu;R3)cos(4zrqM.[T + a/2] - 90 °) 

e~(4qM;R3)cos(8zrqM.[T + a/2] -- 90 °) 

...} -- bM{ ey(qM;R2)cos(2 zrqM.[T + a/2] 

-- 90 °) + ey(3qM;R2)COS(67rqM.[T + a/2] 

-- 90 °) + ...} + CM{ ez(2qM;R3)cos(4"rcqu.[T 

+ a/2] + 0 °) + ez(4qM;R3)cos(87rqM.[T 

+ a/2] + 0 °) + ...} 

The values of the above parameters corresponding to 
the Galy-Roth structure refinement are as follows: 

ex(2qM;R~) = 0.0244, ex(4qM;Rl) -- ex(4qM;R3) 

= 0"0014; 

gy(qM;R4) = -- 0-0185, 6y(3qM;R4) = -- 0.0053; 

ez(2qM;R~) = -- 0"0011, ez(4qM;R~) + ez(4qu;R3) 

= - 0"0046. 

ex(2qM;R3) = -- 0"0020, ey(qM;Rz) = 0"0012, 

ey(3qM;R2) = 0"0031, ez(2qM;R3) = -- 0"0034. 

The extinction condition F(h,k,O,m)*M = 0 unless h = 
2n (see Fig. l d) constrains the latter four parameters 
as well as ex(4qM;R3) and ez(4qM;R3) t o  be zero. The 
conventional three-dimensional space group of Ima2, 
however, applies no such constraint. Nevertheless, 
they all appear to have refined to small values. If we 
set these six parameters equal to zero the residual 
modulation functions along the a and b directions 
appear quite reasonable, i.e. they are much larger 
than the corresponding deviation functions AU~x and 
zlU~y. Such is not the case, however, along the c 
direction. According to Galy & Roth, UIx is an 
almost purely sinusoidal function of q.T whereas U~y 
is a rather more anharmonic function of q.T. Ulz 
versus q.T is not really very plausible. The magnitude 

0"02 

0"00, 

-0"02 

~ ~  Ulx 

0"01~ Uiz / 

- 0 - 0 1 ~  • AU~ . 

(b) 

( c )  

o &  ' ' ' ~ o  ' ' ' l &  

q.T 

Fig. 3. Plots of (a) U~x versus q.T, (b) U~y versus q.T and (c) U~ 
versus q.T. The corresponding deviation functions (a) AU~x, (b) 
AU~y and (c) AU~z, representing the difference between the 
Galy-Roth modulation functions and the residual modulation 
functions, are also shown. The circles represent the eight 
independent points of each of these AMF's sampled by this 
particular member of the solid-solution series. The extra eight 
points on each of the AMF's (labelled by the squares) are 
derived from the shifts of metal atom 2. The amplitude of the 
deviation-function fluctuations gives a measure of the extent of 
uncertainty which should be ascribed to the corresponding 
residual functions or AMF's. The size of the circles and squares 
represents the errors quoted in the original structure refinement. 
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of the shifts involved, however, are very small. Fig. 3 
shows plots of (a) Ulx versus q.T, (b) U~y versus q.T 
and (c) U,z versus q.T calculated using the above 
residual parameters. The corresponding deviation 
functions (a) AUIx, (b) AU~y and (c) AUtz, rep- 
resenting the difference between the Galy-Roth  
modulation functions and these residual modulation 
functions, are also shown in Fig. 3. The circles 
represent the eight independent points of each of 
these AMF's  sampled by this particular member of 
the solid-solution series. Note, however, that 
U2x(q.X) - g,x(q.T + ~),  U2y(q.X) - gty(q.T + ~)  
and U2:(q.T) - - Ulz(q.T + 1).  The extra eight 
points on each of the AMF's  in Fig. 3 (labelled by 
the squares) are thus derived from the shifts of metal 
atom 2. In general, i.e. for irrational x, all possible 
values will be sampled. The amplitude of the 
deviation-function fluctuations gives a measure of 
the extent of uncertainty which should be ascribed to 
the corresponding residual functions or AMF's .  
(Note that the size of the circles and squares in Fig. 3 
represents the errors quoted in the original structure 

(a) 

0"10 

0.0~ 

-0-1~ 

o-10 

0"00 

-0"10 

~,,.... U 3 y 

,A}  AIAAAAA; 
l [! [l [1,0, 

fU3z 

q 

'~' (c) 

0 " ( ) 0  I I I I I I I I I I I I I I I I I 
i,00 

q.T 

Fig. 4. Plots of (a) U3x versus q.T, (b) U3y versus q.T and (e) U~. 
versus q.T. The corresponding deviation functions are also 
shown. Again the amplitude of the deviation-function fluc- 
tuations gives a measure of the extent of uncertainty which 
should be ascribed to the corresponding residual functions or 
AMF's. The circles represent the 34 independent points of each 
of these AMF's sampled by this particular member of the 
solid-solution series. 

refinement.) It seems unlikely that these AMF's  
would vary much with x. However this could only be 
determined by further structure refinements at other 
values of x. 

3.4. Modulation of  the average oxygen subcell 

Given an unmodulated parent oxygen subcell of 
Imam, the little co-group of the primary-modulation 
wavevector qo = aN { = [x/(2x + 1)]a* in the general 
case} and all its higher-order harmonics mq is also 
given by {E, C2~.,try,o:}. The corresponding multipli- 
cation table is the same as that given above in §3.3. 
The above superspace group requires that the modu- 
lations associated with all odd-order harmonics 
transform with R 3 symmetry whereas all even-order 
harmonics transform with R1 symmetry. There are 
two atoms per primitive parent unit cell, labelled 3 
and 4 in Fig. 2(b). 

An R 3 irreducible representation constrains the 
corresponding displacive modulation to entail only 
Co motion whereas an RI irreducible representation 
constrains the corresponding displacive modulation 
not to entail Co motion. The AMF's  (see P~rez-Mato 
et al., 1987) describing the most general possible 
structural deviation of these O atoms from their 
underlying average subcell, for the observed 
superspace-group symmetry of M : A m m a : - l s l ,  can 
then be written in the form: 

U3,4(To) = ao{ ex(2qo;Rt)cos(4rrqo.[To + ao/4] - 90 °) 

+ ex(4qo;Rl)COS(8rrqo.[To + ao/41-  90 °) 

+ ...} +- bo{ey(2qo;R1)cos(47rqo.[To 

+ ao/4]) + ev(4qo;Rl)COS(8~-qo.[T o 

+ ao/4]) + ...} 

+ Co{ez(qo;R3)cos(27rqo.[To + ao/4]) 

+ e:(3qo;R3)cos(67rqo.[To + ao/4]) + ...}, 

where To is an allowed Bravais lattice vector of the 
average O-atom subcell, the _ sign corresponds to O 
atoms 3 and 4 respectively, and the phases are fixed 
by the superspace-group symmetry operation 
{o-xIlao, -qo . lao}  (equivalent to the m in the con- 
ventional Ima2 space group). The remaining struc- 
tural degrees of freedom required to enable a 
complete fit to the Galy-Roth structure refinement 
can be written in the form: 

AU3,a(To) = ao{ex(qo;Rl)COS(2~'qo.[To + ao/4] - 90 °) 

+ e~(3qo;R1)cos(6rrqo.[To + ao/4] 
- 90 o) + ...} 

+- bo{ ey(qo;Rl)cos(27rqo.[To + ao/4]) 

+ ey(3qo;R0cos(6zrqo.[To + ao/4]) + ...} 

+ Co{ e~(2qo;RB)COS(4zrqo.[To + ao/4]) 

+ ez(4qo;R3)cos(8rrqo.[To + ao/4]) + ...} 
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The values of  the above parameters  corresponding to 
the G a l y - R o t h  structure ref inement are as follows: 

ex(2qo;R]) = 0.1692, ex(4qo;R]) = 0.0354, 

ex(6qo;R]) = 0.0105, e,,(8qo;RO = 0.0143; 

ey(2qo;R]) = 0.0843, ey(4qo;R0 = - 0-0007, 

ey(6qo;R1) = - 0"0031, ey(8qo;Rl) = 0"0048; 

ez(qo;R3) = 0" 1361, ez(3qo;R3) = 0-0128, 

ez(5qo;R3) = - 0.0141, ez(7qo;R3) = 0"0083, 

ez(17qo = 0 ;R0  = 0.0081; 

ex(qo;R 0 = 0"0116, ex(3qo;RO = 0.0034, 

ex(5qo;RO = - 0"0050, ex(7qo;RO = - 0"0006; 

ey(qo;R]) = 0"0055, ey(3qo;RO = 0.0027, 

ey(5qo;RO = - 0"0094, ey(Tqo;RO = - 0"0005; 

ez(2qo;RO = 0"0054, ez(4qo;R3) = - 0-0046, 

ez(6qo;RO = - 0.0004, ez(8qo;R3) = 0.0095. 

The extinction condi t ion F(h,k,O,m)* = 0 unless h = 
2n (Fig. l d) constrains the latter 12 parameters  to be 

zero. The convent ional  three-dimensional  space 
group of  lma2, however, applies no such constraint .  
Nevertheless, again they all appear  to have refined to 
quite small  values, generally less than  0.01. This then 
is the level of  accuracy to which we should trust the 
residual parameters .  I f  we set these 12 parameters  
equal  to zero the residual modula t ion  functions 
along the ao, bo and  eo directions are large (much 
larger than  the meta l -a tom shifts i.e. -- __-0-4/~ along 
ao, bo and -- __. 0.7 A along Co) and apparent ly  fairly 
sinusoidal,  a l though there is clearly a need for 
further structure ref inement using a modula ted  struc- 
ture, or superspace-group,  approach.  Fig. 4 shows 
plots of  (a) U3x versus q.T, (b) Uay versus q.T and (c) 
U3z versus q.T calculated using the above residual 
parameters .  The corresponding deviat ion functions 
are also shown. Again  the ampl i tude  of  the 
deviat ion-funct ion f luctuations gives a measure of  
the extent o f  uncer ta in ty  which should be ascribed to 
the corresponding residual funct ions or A M F ' s .  The 
circles represent the 34 independent  points  of  each of  
these A M F ' s  sampled  by this par t icular  member  o f  
the solid-solution series. In general, i.e. for i rrat ional  

(a) 

. . . .  o .  ~ . ~ . ~ ®  . . . . . .  

• " . . . . .  

• • 4 k ,  " ' J  • " 0 -  " • 

• ,b • ,b Q 

7 
• 0 "  • • . O .  

. . .  

O #  o #  e , .  

(b) 

(c) (d) 

Fig. 5. (a) [100]M, (b) [010]M, (c) 
[0"[1]~ and (d) [001]~ zone-  
axis selected area electron dif- 
fraction patterns (SADP's) typi- 
cal of Nb2Zrx-202x+] (x = 
7.1-10-3). Note the very slight 
canting of the satellite reflec- 
tions away from the a~, direc- 
tion in the latter three SADP's. 
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x, all possible values will be sampled. It seems 
unlikely that these A M F ' s  would vary much with x. 
However this could only be determined by further 
structure refinements at other values of x. 

4. Complications 

The very recent observation (Thompson et al., 1990) 
that the true value is q = (1/x)a* + (1 - e)b* + 6c*  
(with e and (5 very small but definitely non-zero 
across the whole solid-solution field; see Fig. 5) 
means that the composite superspace group of 
M : A m m a : - l s l  given above cannot strictly be cor- 
rect (in fact the implied triclinicity of the oxygen 
subcell strictly reduces the composite superspace- 
group symmetry to the trivial P:PI:I ) .  In terms of 
the modulation functions given in §3.3 and 3.4 
above, such a symmetry reduction allows shifts along 
a, b and c to exist for each modulation harmonic. In 
practice, however, the extinction conditions implied 
by a superspace-group symmetry of  M : A m m a : - l s l  
are clearly still valid i.e. the amplitudes of these extra 
symmetry-compatible distortions must be vanish- 
ingly small. Structure-factor expressions, such as that 
given in P6rez-Mato et al. (1986) for example, are 
compatible with this interpretation provided e and S 

are small. Hence the expressions given above for 
U I(T), U2(T) and U3,4(To) remain valid except that 
qM and qo have to be very slightly altered to allow 
for incommensurability along b and c as well as 
along a. Similarly, the parent O-atom subcell shown 
in Fig. 2(b) must be very slightly strained to be 
compatible with experimental observation. 
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Abstract 

The displacive ferroelectric Bi3TiNbO9 [M, = 911.7, 
orthorhombic, A21am, a = 5.4398 (7), b = 5.3941 (7), 
c = 25.099 (5)/~, Dx = 8.223 g cm-3, Z = 4, Mo Ka, 
,~ = 0.7107 A, /z = 737.6 c m - i ,  F(000) = 1535.3] is 
described at room temperature as a commensurate 

modulation of  an Fmmm parent structure. Displacive 
modes of F2mm, Amam and Abam symmetry are all 
substantial and reduce the symmetry to A21am. 
A final value of 0.0295 for R1 =Y.llFobs(h)l- 
IFcalc(h)ll/Y, hlFobs(h)l was obtained for the 1386 
unmerged data used for refinement. The modes of 
Amam and Abam symmetry were essentially the same 
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